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Abstract

Leakage-resilient cryptography tries to design algorithms that are provably
secure against side-channel attacks, attacks that exploit the physical instead
of algorithmic properties of an implementation. We present a message au-
thentication code that is secure in the model proposed by Micali and Reyzin
[MR04]; it is essentially a combination of a leakage-resilient pseudorandom
generator as found by (Dziembowski and) Pietrzak [Pie09a, DP08] and an
ordinary (one-time) MAC. We also give some supplementary results about
these generators.
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Introduction

Cryptography is everywhere, in the form of wireless internet, cell phones
and internet banking. These systems keep our data secure; we even use
cryptography to guard our state secrets. In short, modern cryptography is
highly successful.

This success is not an accident: wherever possible, cryptographers demand
mathematical proofs that the algorithms and protocols work. While exacting,
this demand gives us a high degree of confidence in our results; a degree of
confidence that would be hard to achieve if we relied only on experience and
intuition, as had historically been the case.

Unfortunately, these security proofs almost all rely on the assumption
that the device running the cryptographic algorithm is a “black box” — that
its inner workings cannot be observed or tampered with. This is, sadly, not
always the case in real-world scenarios.

As an example, consider car keys or garage openers. The first generation of
these devices just broadcast a password; anyone standing nearby could read
it and steal the car while the owner was away.

The car industry responded by switching to a cryptographic scheme.
However, the real world is a harsh place for cryptography: for instance, the
widely-deployed KeeLoq system was recently defeated [EKM+08]. This attack
exploited a so-called side channel, a physical property of the device (instead
of the mathematical properties of the algorithm considered in the security
proofs). Carefully analysing the power used by the device allowed Eisenbarth
et al. to recover the per-device and manufacturer keys, completely breaking
the KeeLoq system (see section 3.1 for an overview.)

KeeLoq was already suspect following a theoretical attack [IKD+08]; addi-
tionally, due to a questionable trade-off on the part of the designers, breaking
a single KeeLoq device broke all devices in that production run. However, a
device without these issues could fall to the same attack.
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Figure 1: The challenge and response of a MAC-based authentication protocol.

The cryptographic industry (the people actually building KeeLoq, smart cards
and other such devices) has worked hard to make side-channel attacks more
difficult to carry out. As a consequence, modern devices are quite resistant to
attack (KeeLoq was designed before countermeasures against side channels
became common.) However, the security of these devices is only safeguarded
by experience and intuition, and can usually be broken at “unrealistically
high” cost in time, expertise and money: for instance, about a week’s work
for a well-equipped expert with access to full schematics [Gir10, slide 46].

In contrast, the more theoretically-inclined cryptographers try to deliver
provably secure systems which take thousands of years to break, but tradi-
tionally does not consider side-channel attacks at all. This has (fairly recently)
changed: security proofs have been presented that prove security against
(some abstraction of some class of) side-channel attacks. This field is called
physical (or leakage-resilient) cryptography.

This thesis presents a message authentication code (MAC) that is secure in the
theoretical model of leakage proposed by Micali and Reyzin [MR04]. A MAC
is a communication protocol which requires that both sides know the same
secret (“password.”) One side can then calculate a tag, which is a function
of both this secret and the message she wishes to send, and send both the
message and this “tag.” The other side can verify that the tag received matches
the message received. (Note that this is not encryption: a MAC tries to ensure
that a message cannot be changed, whereas encryption tries to ensure that a
message cannot be read; see section 2.3.)

The adversary we consider fully controls the communication channel
between these devices and can obtain information about the sending device
via a side-channel attack (there are some limitations on the information that
can be obtained; see section 3.2.) We show that this adversary almost certainly
cannot create a valid tag, even for a message chosen by the adversary (of
course, this assumes a proper choice of parameters.)
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A (leakage-resilient forward-secure) MAC can be used to create a (leakage-
resilient) authentication algorithm (and thus, a more secure car key or garage
opener.) In an authentication scheme, there are two parties, the verifier and
the authenticator; the authenticator tries to convince the verifier of her identity
(see figure 1.) The verifier sends a random challenge and waits for a response
(a tag) from the authenticator; she is convinced of the authenticator’s identity
if she receives a tag such that the pair of challenge and tag is valid.

It is fairly easy to see that the security of the above scheme reduces to the
security of the MAC. After all, if the adversary can forge a tag on a random
challenge (that she has not seen before,) she can certainly forge a tag on a
chosen message; but that would break the MAC.

This thesis is intended to be readable by a motivated student of mathematics;
chapter 6 and (the last section of) appendix A may be difficult, though. Those
with some knowledge of cryptography should read the next section and
then skip to part II; people with knowledge of leakage-resilient cryptography
should take note of definition 4.7 (page 22) and start reading either there or in
chapter 5.





Notation

We will mostly use standard mathematical notation and fairly standard pseu-
docode, but we also use a few less common notations.

If S is a set, US, U′S, U′′S and so on are independent random variables dis-
tributed according to the uniform distribution on S. If n ∈ Z≥0, Un, U′n, U′′n
and so on are independent random variables with the same distribution as,
but independent from, U{0,1}n . If we need more variables, we will use U(1)

n ,

U(2)
n and so forth instead of Un, U′n and so forth.

All random variables we consider are discrete. If X is a (discrete) random
variable on S, ΩX = {x ∈ S : P[X = x] > 0}. If X and V are random variables,
Xv is the random variable defined by ∀x ∈ supp(X), v ∈ ΩV : P[Xv = x] =
P[X = x|V = v].

Following Knuth [Knu92], we use the notation [A] for the function which is 1
if the predicate A holds and 0 otherwise (“Iverson’s convention”). This was
originally introduced for sums and products, e.g. ∑s∈S s [∃t ∈ T : s = −t].

As usual in cryptography, the logarithm implicitly uses base 2 and 0n resp. 1n

represent the tuples (0, 0, . . . , 0) resp. (1, 1, . . . , 1) of length n. In pseudocode,
a tuple (x, y) is a value which can be efficiently calculated from x and y and
from which x and y can be efficiently calculated.

If x and y are tuples, x||y is the tuple of length |x|+ |y| defined by (x||y)i =

xi for i ≤ |x| and (x||y)i = yi−|x| otherwise. If x is not a tuple, x||y =

(x)||y; if y is not a tuple, x||y = x||(y). Additionally, xm..n is the tuple
(xm, xm+1, . . . , xmin(|x|,n)) and x[m..n] is the tuple (x||0n)m..n. If x, y ∈ {0, 1}n,
x⊕ y is the tuple of length n defined by (x⊕ y)i = [(xi, yi) ∈ {(1, 0), (0, 1)}].

Many cryptographic protocols need a random key, typically generated by a
random algorithm Gen. We use a random variable K instead, because this is
easier and more clear in some places.





Part I

Black-box cryptography





1 Introduction to cryptography

Cryptography has been practised for millennia: famously, Julius Caesar
“encrypted” some of his letters by shifting each character three places (so “A”
becomes “D,” ”B” becomes “E,” etcetera.) Nonetheless, until the late 20th
century, cryptography was badly-understood and practised only by a select
few within the military.

Modern cryptography is very different. The algorithms and theory in-
volved are, mostly, publicly available. Modern cryptography is not perfect,
but it has replaced the black art of earlier centuries with well-tested explicit
assumptions and mathematical derivations.

1.1 Keyed algorithms

Modern cryptography emphasises the use of keyed algorithms — that is,
schemes that are secure if a small amount of randomly chosen data, the
key, is unknown to the attacker. Perhaps the biggest advantage of this ap-
proach is that the inventor can publish such schemes without rendering them
useless (of course, she should not publish the specific key she uses!) If the
cryptographic community quickly breaks the proposed scheme, she at least
knows not to use it; and if a large number of highly intelligent people have
unsuccessfully tried to break the scheme, she can have some confidence that
no one else will be able to break the scheme either.

Of course, publishing a scheme has the additional advantage that busi-
nesses and individuals can use it, too — which is a net win for a government
with a lot of economic value to protect. Additionally, keeping the key secure
may be easier than keeping the whole algorithm secure.

In this thesis, we only consider so-called symmetric cryptography, i.e.
schemes that require that all parties involved share a secret. The alternative is
asymmetric or public-key cryptography; these algorithms can be tremendously
useful, but tend to be much slower than their symmetric counterparts.

1.2 Reductions

Clearly, a key goal of cryptography is providing some assurance that a scheme
is secure. The gold standard is a reduction in the standard model. In the
standard model, we assume that an adversary will not be able to observe
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or tamper with the inner working of the algorithm (“black box.”) However,
we only limit the computational power of the adversary by specifying e.g.
a maximum circuit size and allow her to supply all input and observe all
output. We then go on to show that any adversary that can break our security
guarantee can be adapted to solve a problem which is assumed to be hard to
solve.

With our current knowledge of complexity theory, such a reduction is
usually the best we can hope for. Being able to prove the security of many
cryptographic schemes would quickly yield that P 6= NP. While it is widely
believed that P 6= NP, finding a proof of that statement is the holy grail of
complexity theory — in other words, a problem that so far has withstood
decades of attempts at solving it.

As an example, the well-known RSA algorithm is related to the problem of
factoring large numbers — a problem which, despite millennia of work, still
cannot be efficiently solved (see footnote 2 on page 14 for some details on this
algorithm.) Of course, factoring is not an unsolvable problem: one can simply
try every divisor. However, we need to check a very large number of divisors
(about the square root of the value of the key.) Since the RSA algorithm only
takes a number of operations related to the length of the key, we can choose the
keys to be sufficiently long that factoring them is not feasible, but sufficiently
short that we are still able to use them reasonably efficiently.

We will work exclusively in this “standard model”; part II will relax the
“black box” assumption (see section 3.2.)

1.3 Measuring security

Traditionally, cryptographic statements have been asymptotic statements. We
gave a somewhat informal example above, where we stated that factoring a
number involves “trying a very large number of divisors, about the square
root of the value of the key.”

More formally, consider an arbitrary polynomial f : Z≥1 → R and an
arbitrary series of adversaries (A1,A2, . . .) such that ∀i ∈ Z≥1 : |Ai| ≤ f (i).
(The meaning of |Ai| is given in section 2.1; if you are more familiar with
running time, feel free to substitute that.) Let pi be the probability thatAi finds
the factorization of an RSA-generated random number in {0, 1, 2, . . . , 2n − 1}.
Then there is a polynomial g : Z≥1 → R such that ∀i ∈ Z≥1 : pi ≤ 1

g(i) .
Without the formulae, the probability that a polynomial-size adversary breaks
RSA is negligible.

Instead of giving asymptotic statements like the above, we will give exact
bounds in our proofs. Such statements are called concrete statements; if we
state that a scheme is secure in this way, this is called concrete security.



2 Some key concepts

We will assume the reader is at least somewhat familiar with complexity
theory (Turing machines and (polynomial) running time) — although an
informal familiarity will suffice, as this is in no way the focus of this thesis.
Additionally, we assume some knowledge of basic probability theory.

All other required concepts from cryptography are introduced succinctly, but
some background knowledge will be helpful as we give only minimal details
and no proofs. The interested — or confused — reader may wish to refer to
a good textbook like Katz and Lindell’s Modern Cryptography [KL08] and/or
Papadimitriou’s Computational Complexity [Pap94].

2.1 Boolean circuits

(Families of) Boolean circuits are an alternative model of computation to the
ubiquitous Turing machines. Circuits may be a better fit for some problems
— in particular, circuits are more similar to how a smart card works than
Turing machines are. Leakage-resilient cryptography usually uses circuits, for
this reason and others. This section owes much to Papadimitriou’s textbook
[Pap94], although we extend the definition given there. Most importantly, we
introduce oracles and allow the output of a circuit to consist of more than one
bit.

Properly defining circuits takes a lot of work; however, the basic concept
is very simple and can be grasped simply by looking at figure 2.1. With the
exception of a few unimportant details, this thesis can probably be completely
understood when the following definition is skipped.

Definition 2.1. A gate is a function f : {0, 1}n → {0, 1}m, an input gate Xi
(where i ∈ Z≥1), a output gate outm or a oracle Oi. Gates that are functions may
be the constant functions 0 or 1, the unary function ¬ : {0, 1} → {0, 1} : x 7→
1− x or the binary functions ∧ : {0, 1}2 → {0, 1} : (x, y) 7→ xy or ∨ : {0, 1}2 →
{0, 1} : (x, y) 7→ 1− (1− x)(1− y). The in-degree of a gate f : {0, 1}n to {0, 1}m

is degin( f ) = n and the out-degree of such a gate is degout( f ) = m. The in-
and out-degree of Xi are 0 and 1; the in- and out-degree of outm are m and 0;
oracles may have any in- and out-degree.

A (Boolean) circuit is a tuple C = (G, A), where G = (X1, X2, . . . , Xn, 0, 1,
f1, f2, . . . , fp,O1,O2, . . . ,Oq, outm) is a tuple of gates and A is a set of wires
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between these gates, i.e. a set of tuples (i, j, k, l) of positive integers such that
i, k ≤ |G|, j ≤ degout(i) and l ≤ degin(k). For any such k and l, we require
that there are unique (ik,l , jk,l) such that (ik,l , jk,l , k, l) ∈ A. Furthermore, A
must not have a subset {(i1, j1, i2, l1), (i2, j2, i3, l2), . . . , (im, jm, i1, lm)}.

Let x ∈ {0, 1}degin(C). If gk is a function, V(C, k, x) = gk(V(C, ik
1, x)jk1

,

V(C, ik
2, x)jk2

, . . . , V(C, ik
degin(gk)

, x)jk
degin(gk)

). Otherwise, if gk is the special sym-

bol Xi, V(C, k, x) = xi. The output of a circuit C without oracles on x is C(x) =
V(C, |G|, x) = (V(C, i|G|1 , x)

j|G|1
, V(C, i|G|2 , x)

j|G|2
, . . . , V(C, i|G|m , x)

j|G|m
). If C con-

tains any oracles, these must be supplied when it is invoked: CO1,O2,...,Oq(x).
In this case, the oracle gates Oi are replaced by the function gates O1 of the
same in- and out-degree; the output is then calculated as before.

The in-degree of a circuit C = (G, A) is the largest integer n such that G1..n =

(X1, X2, . . . , Xn). The out-degree of a circuit is degout(C) = degout(G|G|) =

degout(outm) = m. The size of a circuit is simply the number of gates:
|C| = |G|. If a circuit calls another circuit and supplies functions to be used
as oracles, it must supply one copy of the function for each time the oracle
is invoked; the gates implementing these copies are considered part of the
calling circuit for purposes of determining the size. (The invoked circuit only
needs one gate Oi for each invocation of the oracle.)

A family of circuits C is a set of circuits of distinct in-degrees. Its size is
|C| = ∑Ci∈C |Ci|. Its output on x ∈ {0, 1}n, where the n is such that there is a
circuit Cn ∈ C with degin(Cn) = n, is C(x) = Cn(x). We will often simply use
“circuit” where a family of circuits is meant. As a technical detail, the function
calculated by a family of circuits must be in PH/poly.1

We do not consider randomized circuits at all: we do not need these to
generate our keys, as discussed in chapter , and only consider worst-case
adversaries. There is at least one “most lucky draw” for any adversary that
uses randomized data that is independent of its input and the results of any
oracle queries; replacing the random data by this “most lucky draw” does not
decrease the success probability of the adversary. This observation is known
as Yao’s principle.

It may be interesting to note that the complexity class of polynomial-size
circuits includes BPP, the class of polynomial-time programs for a Turing
machine that give the correct answer with probability at least 2

3 . This follows
from an argument similar to Adleman’s proof that R is in this class [Adl78].
Therefore, even if the above did not hold, the class of polynomial-size circuits
includes (almost) all algorithms that are considered practical.

1This complexity class is extremely large; the chief use of this restriction is excluding
circuits that are themselves small but that can only be constructed after evaluating a ridiculously
complex or uncomputable function. This condition is required by Barak et al. [BSW03] in a result
which is the used in a lemma by Dziembowski and Pietrzak [DP08, lemma 3]. This lemma, in
turn, is required for the pseudorandom generators introduced by (Dziembowski and) Pietrzak
[DP08, Pie09a], which we use.
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¬
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∨

X1 X2 X3 X4
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(a) X1 NAND X2 (b) X1 ⊕ X2 (c) [X = (0, 1, 1, 0)]

Figure 2.1: Various Boolean functions as circuits

2.2 Pseudorandom generators

Some algorithms require a lot of random data (a very large key.) Even
worse, many communication protocols require that both sides have access
to the same random data. It is usually possible to securely generate a small
amount of random data: modern operating systems include algorithms to
extract randomness from things such as the exact time disk accesses take to
complete, or specialized hardware may be used. Furthermore, algorithms
like Diffie–Hellman(–Merkle) key exchange usually make it possible to obtain
shared random data from private random data. (For more details, see Diffie
and Hellman’s orginal paper [DH76] or Katz and Lindell’s treatment [KL08,
section 9.4 and further].)

This leaves us with the problem of generating a large amount of random
data. It would be nice if we could “stretch” a small amount of random data
into a large amount of random data. This is, obviously, impossible — no
matter which (deterministic) algorithm is used to turn a randomly-chosen
element of {0, 1}64 into an element of {0, 1}1024, the distribution on {0, 1}1024

will be far from uniform. However, we don’t really need random data — data
that “looks sufficiently random” to fool an adversary suffices.

Definition 2.2. Let X, Y and V be random variables, let s ∈ Z and let
ε ∈ R. We say that X is (ε, s)-indistinguishable from Y if, for every circuit D
of size at most s, |P[D(X) = 1]− P[D(Y) = 1]| < ε. We say that X is (ε, s)-
indistinguishable from Y given V if (X, V) is (ε, s)-indistinguishable from (Y, V).

This is the main idea behind a class of functions known as pseudorandom
generators or stream ciphers: turn a small amount of random data into a large
amount of pseudorandom data — data that cannot be distinguished from
random.
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The name “stream cipher” suggests encryption, and we will not treat
encryption in any kind of depth. The interested reader may wish to turn to
Katz and Lindell’s textbook [KL08, chapter 3].

Definition 2.3. A function F : S→ T is a (ε, s)-secure pseudorandom generator if
F(US) is (ε, s)-indistinguishable from UT .

Of course, only efficient functions F where T is (much) larger than S are
used in practice. For more background on pseudorandom generators, see
[KL08, section 3.2 and further].

2.3 Message authentication codes

Message integrity, along with encryption, is one of the basic problems of
cryptography. The problem is most succinctly stated as follows: a message
“send BC 100 to account 1234” to a bank should not be received as “send BC 999
to account 5678,” even if the communication channel is insecure. Note that
encryption does not suffice to guarantee this; see the end of this section.

Message authentication codes (MACs) are designed to solve the above
problem. Essentially, instead of just the message, we send a message plus a
“tag,” which is computed based on the message and a shared secret. The bank
can then verify this tag and discard any messages with a wrong tag.

Definition 2.4. A tuple Π = (K,Tag,Vrfy) is a message authentication code if
K is a random variable and Tag : ΩK ×M → T and Vrfy : ΩK ×M×T →
{0, 1} are circuits. We require that Vrfyk(m,Tagk(m)) = 1 for all k ∈ ΩK and
all m ∈M.

Of course, for a MAC to be practical, it should be possible to generate K
efficiently and Tag and Vrfy should be fast.

The standard security notion for MACs is unforgeability: an adversary cannot
produce a valid tag on a message, even when given the ability to request tags
on chosen messages. Allowing the adversary to supply arbitrary messages is
not unrealistic: in the above example, an attacker could “accidentally” wire
someone money and then request it back. This will often cause that person to
generate a message with known contents, say “send BC 001 to account 5678.”
Of course, there is a limit to how often this can be done before someone gets
suspicious.
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Algorithm 2.1: BlackBoxForgeq
A,Π(k)

Q←− ∅
(m, t)←− ATagOk(·)

return [Vrfyk(m, t) = 1∧ |Q| ≤ q ∧m 6∈ Q]

Oracle TagOk(m)
Q←− Q ∪ {m}
return Tagk(m)

Definition 2.5. Let Π = (K,Tag,Vrfy) be a message authentication code.
Then Π is (ε, s, q)-secure in the black-box sense if, for any circuit A of size at
most s, P[BlackBoxForgeq

A,Π(K) = 1] < ε.

Note that message authentication is different from encryption. On one
hand, the message is sent without any attempt at hiding it and can easily
be read by an eavesdropper, so MACs do not provide privacy. On the other
hand, encryption does not provide message integrity. It is common to encrypt
a message m as m⊕ e, where e is some data generated by a pseudorandom
generator. Clearly, if the message is known, as in the example above, the
attacker could send m⊕ e⊕m⊕m′, where m′ is any message of the attacker’s
choice; decrypting this message will yield m′, a message chosen by the attacker.

We will use an equivalent, but slightly different, definition of security for
the rest of this thesis: see definition 5.1 and lemma 5.2.





Part II

Leakage-resilient cryptography





3 Introduction to

leakage-resilient cryptography

As noted in the introduction, the usual black-box cryptography does not
consider side-channel attacks, which unfortunately are possible in the real
world. Leakage-resilient cryptography strives to model these attacks and
then provide algorithms that are provably secure even against these attacks.
This would allow us to supplement the rules of thumb and intuition used in
industry with some solid mathematical proofs.

To obtain provably secure algorithms, we must (typically) assume that
the adversary is bounded in some way. We typically assume a bound on the
running time or circuit size; we will also need to assume that the side-channel
attacks available to the adversary are somehow limited.

This assumption is not necessarily justified: as a worst-case scenario,
consider a computer designed for exhibitions, which shows the contents of its
whole memory on the front panel, slowly changing the display as instructions
are executed — clearly, hiding secrets from people looking at the front panel
is impossible.

More realistically, not all hardware has been designed with security in
mind. For instance, basic embedded 8-bit microcontrollers are often highly
vulnerable to even “easy” attacks like simple power analysis (see the next
section).

Nonetheless, in practice, extracting the internal state from a well-designed
device appears to be quite difficult — although typically not impossible.

3.1 Some attacks

Before introducing our model, in the next section, we give an overview of some
well-known side-channel attacks, if only to give some flavour. This section
does not contain any original material and are required only for a proper
understanding of the open questions presented in section 6.1. On the other
hand, these attacks do provide the motivation for studying leakage-resilient
cryptography in the first place.

Timing attacks. The adversary simply makes the device perform some func-
tion and measures how long it takes to do so. Timing attacks are one of the
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Algorithm 3.1: Vrfyk(m, t) (vulnerable implementation)

t′ ←− Tagk(m)
for i = 1 to |t′| {

if ti 6= t′i {
return 0

}
}
return 1

older and simpler attacks, but can still be effective.
Let (K,Tag,Vrfy) be a MAC, and suppose Vrfy : ΩK × {0, 1}T ×M →

{0, 1} is implemented as algorithm 3.1. Note that the number of operations
performed by this algorithm is some constant plus a multiple of the number
of bits that are equal in t and t′. This allows an attacker to find out that
e.g. computing Vrfyk(m, 0||0T−1) takes slightly less time than computing
Vrfyk(m, 1||0T−1), computing Vrfyk(m, (1, 1)||0T−2) takes slightly less time
than computing Vrfyk(m, (1, 0)||0T−2), and so on. In this way, a valid tag can
be obtained for any message with far fewer operations than it would take to
try every possible key.

This issue can be solved by careful implementation: an algorithm that
contains no branches (i.e. no if statements or the like) is usually impossible
to attack in this fashion.1,2 Nonetheless, algorithm 3.1 was inspired by a
real-world vulnerability in a reasonably well-known cryptographic library

1Note that merely executing a constant number of instructions across all possible branches —
which may be easier to achieve than being completely branch-free — is not always sufficient.

Modern CPUs can process data much faster than modern memory can supply data. Fortunately,
most programs perform most of their operations on a comparatively small amount of memory.
Therefore, modern CPUs include a small amount of very fast (and very expensive) memory, the
CPU cache. By keeping copies of “interesting” parts of the main memory in the much faster cache,
the CPU doesn’t have to wait for the main memory quite as much.

This greatly improves performance if the program requests a value from memory that is
already in the cache. Unfortunately, this means that code that uses different pieces of memory
depending on the input may also be vulnerable to timing attacks, albeit only from attackers that
can influence the cache (in practice, that can run programs on the same hardware at the same
time.) Percival has described a particularly bad example [Per05].

2In particular cases, techniques other than branch-free programming can be simpler and/or
faster, e.g. in the case of the RSA algorithm. This algorithm was first described by its inventors
Rivest, Shamir and Adleman [RSA78]. We give a succinct one-paragraph introduction below;
there are gentler and more complete introductions to this algorithm [RSA78] or [KL08, sections
7.2, 10.1 and 13.3]. Recall that ϕ(N) = |{m ∈ {1, 2, . . . , N} : gcd(N, m) = 1}| and xϕ(N) ≡ 1
mod N for all x (Euler’s theorem.)

The RSA algorithm requires computing cd mod N. Here, c is the input, i.e. controlled
by the adversary; N = pq and e ≡ d−1 mod ϕ(N) are known to the adversary; d, p, q and
ϕ(N) = (p− 1)(q− 1) are secret, and allowing the adversary to learn any of these breaks the
security of the algorithm.

To speed up the computation, cd mod N is usually calculated by calculating cd1 mod p and
cd2 mod q and combining these by using the Chinese Remainder Theorem (d1 and d2 are values
computed from d for this purpose.) The runtime of many algorithms to calculate cd2 mod q does,
unfortunately, depend on d2 and/or q. Brumley and Boneh have written a good exposition of an
attack based on this property [BB05].

To prevent this attack, we can calculate (rec)d · rϕ(N)−2 ≡ cd mod N, where r is a random value,
instead of computing cd mod N directly. The base of the exponentiation is now unpredictable to
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found by Lawson [Law09].
This is the only side-channel attack presented here that could feasibly be

conducted over the internet (as conjectured by Crosby et al. [CWR09]; Brumley
and Boneh successfully performed such an attack over a switched LAN [BB05,
section 5.7].) On the other hand, many attacks in this class requires the ability
to run a program on the same hardware as the program being attacked, which
may be feasible on some internet-connected servers (which frequently run
many programs at different privilege levels) but definitely isn’t on smartcards.

Power analysis or EM analysis. Power or EM (electromagnetic field) analy-
sis is conceptually simple: an attacker measures the power consumption of the
device, or the electromagnetic field around the device, many times per second.
In either case, she can tell how much power is consumed by the device.

Typically, hardware is designed to be as energy-efficient as possible. This
is doubly true of smart cards and other embedded systems where only very
limited amounts of power are available. This often means that, while executing
a particular task, a piece of hardware only draws enough power to perform
that particular task. This is true of the gates in a circuit (which are very
similar to the gates in a circuit as defined in section 2.1,) but also for (CMOS)
memory: storing data in such memory uses power proportional to the number
of changed bits.

This attack is mostly a problem for smart cards and other embedded
devices — servers are much safer, since they are usually placed in a guarded
location, since the circuitry is often extremely complex and since they typi-
cally run at a very high speed. That said, power analysis is a very popular
and highly effective attack that has broken quite a few real-world systems.
Eisenbarth et al. describe such an attack on the KeeLoq system [EKM+08].

We have no solid tools to prevent this attack, but all smartcards produced
by industry are subjected to such an attack before receiving a certification.
This seems to be fairly effective, at least to the extent that breaking such a
device really takes as much time and effort as the standard requires. I feel
that it is somewhat unfortunate that the highest level of security that can be
certified under these standard is still comparatively low, though — the highest
level may be given to devices that can be cracked in a week by a well-equipped
expert with inside information. There is, perhaps, little danger of a newspaper
or competitor breaking such a device, but relying on such a device to keep
your data safe against, say, a well-equipped secret service seems foolish.

Cold-boot attacks. These attacks have recently gotten quite a bit of attention.
The idea is simple: an attacker simply reads the memory, either after rebooting
into a custom operating system or after physically removing the memory from
the machine. Modern (DRAM) memory begins “forgetting” soon after the
machine loses power; however, this process takes some time (see figure 3.1,) or

the adversary, which defeats such attacks. This countermeasure is called blinding and is widely
implemented.
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(a) After 5 seconds (b) After 30 seconds (c) After 1 minute (d) After 5 minutes

Figure 3.1: A graphical view of (a particular) memory gradually “forgetting”
the stored data ([HSH+08, figure 4], used with permission.)

a lot of time if the memory is cooled. During this time, the memory can be read
to recover (part of) its contents; from there on, the chief difficulty is finding
the encryption keys in the “noisy” memory image and reconstructing them.
Halderman et al. wrote a very readable article about this attack [HSH+08].

There are other ways of achieving the same result (reading memory.) A
common alternative is to attach a device that is given unlimited memory
access (DMA access.) This can be done while the computer is running and is
much harder to detect than a cold-boot attack. However, such attacks can be
defeated simply by making sure that no devices can be attached, while the
cold boot attack is harder to guard against. For an example of such an attack,
see [Boi06].

These attacks are devastating against laptops with encrypted disks, but
harmless if the device has been off for a couple of minutes before an attacker
is able to access it. The basic idea — read the memory — is equally viable
against smartcards and other dedicated security devices; however, these have
typically been engineered to make physically accessing the memory hard, e.g.
by encasing the device in an outer layer crisscrossed with wires and erasing
the memory as soon as any wire is broken or short-circuited. It probably helps
that the certification authorities require a fairly high degree of resistance to
such attacks.

Fault induction. Finally, let us consider fault induction — deliberately caus-
ing errors to occur in the calculation. This can be done in many ways: focused
laser light may scramble part of a circuit, abnormally low or high voltage may
cause errors in all sorts of components, or a wire may be connected to a power
supply to change the logic of the computation. In many cases, even random
faults can be used to easily break the scheme: for instance, Boneh et al. show
that inducing a single fault in the computations typically used to implement
the RSA algorithm suffices to recover the private key [BDL97].

Such attacks are rather hard to execute, and even harder on servers (due to
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the same issues that make power analysis hard there,) but can be devastating.
There are some ways to guard against such attacks — typically by doing the
calculation twice or checking the answer by performing the inverse calculation
— but we, again, do not have a general theory. Additionally, since these attacks
are (correctly) considered very difficult, the certification authorities are not as
strict here as elsewhere.

3.2 Modelling side-channel attacks

Following Micali and Reyzin [MR04], we model leakage as a function supplied
by the adversary. We restrict this function in two ways: the output must be
in a fairly small set and the function is evaluated only on the memory that
has been used by this particular calculation. Thus, we assume that previous
calculations have no effect on the leakage from the current calculation. We
also assume that “only computation leaks information,” that is, data that is
not accessed is completely secure.

Micali and Reyzin define a variant Turing machine which resembles a
conventional computer enough that one can define leakage for such devices.
We will take a much simpler approach: we allow the adversary to supply a
function each time the device is used (in addition to the input to the device).
The supplied function is evaluated on all data that has been touched (read
and/or written) by this calculation. The adversary then obtains the output of
this function, which must be in a small set, along with the output of the device.
We choose this “small set” to be {0, 1}λ and say that the implementation leaks
λ bits.

In addition to the above, Micali and Reyzin assume that the leakage
function is efficient. As a consequence of our definition of circuits, the size of
the leakage functions “counts against” the size of the adversary, achieving the
same effect.

We introduce a new notation, x k+←− F(k), which means “run F(k) and assign
its output to x; assign an unambiguous representation of all contents of all
memory touched while calculating F(k) to k+.” Note that k+ includes data
that was overwritten as result of evaluating F(k) and the like.

This model is not perfect; see section 6.1 for a discussion. On the other hand,
we do not necessarily need the full power of these assumptions; Pietrzak’s
generator can be proven secure assuming only that certain leakages are
uncorrelated [Pie09a, section 1.1], which is weaker than “only computation
leaks information.”





4 Pseudorandom generators

Pseudorandom generators have been introduced in section 2.2. The relevant
security definition (definition 2.3) was, of course, based on a black-box as-
sumption. However, similar constructions are possible in leakage-resilient
cryptography.

Unfortunately, we cannot hope for output that is indistinguishable from
the uniform distribution. The adversary, after all, can request part of the
output as leakage. Therefore, we will first introduce some additional concepts
which allow us to express “how random the output is.”

4.1 Entropy and pseudoentropy

Consider an adversary guessing the value of a random variable X. If the
adversary has no further information, the best guess is the value that X is
most likely to take. Note that this probability is 2−n if X = Un and gets higher
as the distribution of X differs more from the uniform distribution. This is the
idea behind min-entropy, the most common characterization of “randomness”
in cryptography.

Definition 4.1. The min-entropy of a random variable X is H∞(X) = − log
maxx∈ΩX P[X = x].

In many cases, the adversary has some information about X. We can
extend the above notion to handle this.

Definition 4.2. Let X and V be random variables. Then the min-entropy of X
given V is H∞(X|V) = minv∈ΩV H∞(Xv).

Min-entropy gives a very strong guarantee: no adversary — not even one
with unlimited resources — can guess the value of a random variable X with
probability greater than 2−H∞(X|V), where V is all the information that the
adversary has available.

We introduced pseudorandom generators in section 2.2. These generators
are tremendously useful, since schemes using a pseudorandom generator
can get by with much less random data than would otherwise be required.
However, the output of the pseudorandom generator is not truly random
(in the above terms, the min-entropy of the output is at best as large as the
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min-entropy of the input), but does “look random” to adversaries with limited
resources. We can formalize this using HILL-pseudoentropy.

Definition 4.3 ([HILL99, HLR07, DP08]1). Let X, Y and V be random vari-
ables, let s ∈ Z and let ε ∈ R. The (ε, s)-HILL-pseudoentropy of X is at
least p, denoted as HHILL

ε,s (X) ≥ p, if X is (ε, s)-indistinguishable from Y
and H∞(Y) ≥ p. The (ε, s)-HILL-pseudoentropy of X given V is at least p, de-
noted as HHILL

ε,s (X|V) ≥ p, if X is (ε, s)-indistinguishable from Y given V and
H∞(Y|V) ≥ p.

Note that the HILL-pseudoentropy is, indeed, at least as high as the min-
entropy. Consider random variables X and V. Then HHILL

ε,s (X|V) ≥ H∞(X|V)

for all s ∈ Z and ε ∈ R, since X is clearly (ε, s)-indistinguishable from X itself
(given V.)

It may be instructive to consider the pseudoentropy of Un given [Un = 0n].
Note that [Un = 0n] is almost never 1; on the other hand, if it is, guessing Un
becomes very easy. We could naively say that HHILL

0,s (Un| [Un = 0n]) = 0, but
that is not very useful. However, Un is indistinguishable from U{0,1}n\{0n}
exactly if Un 6= 0n. Therefore, HHILL

2−n ,s (Un| [Un = 0n]) ≥ log(2n − 1).
Let us now consider the probability that an adversary guesses correctly.

If Un = 0n, all bets are off; otherwise, the probability of guessing correctly is
1

2n−1 , for a maximum total success probability of 1
2n · 1 + 2n−1

2n · 1
2n−1 = 1

2n−1 .
This make sense, given that the adversary essentially gets to guess twice (0n

and a value of her choice.)

As can be seen from the citations above, HILL-pseudoentropy is not a new
concept. Nonetheless, it can be difficult to handle. For instance, if X is a
random variable and f : ΩX → {0, 1}λ is any function, then H∞(X| f (X)) ≈
H∞(X)− λ with high probability (we obviously require that λ ≤ |ΩX |; see
proposition A.1.) If f can be calculated by a circuit, we’d expect that, likewise,
HHILL

ε,s (X| f (X)) ≈ HHILL
2λε,s−| f |(X)− λ. We conjecture that this is not true; the

interested reader can find our reasoning in section A.1.

4.2 Leakage-resilient pseudorandom generators

Pseudorandom generators are as useful in leakage-resilient cryptography as
in black-box cryptography. We need significantly more complex algorithms
and security proofs, though.

Consider a generator, incrementally generating “chunks” of pseudorandom
data from a single, unchanging key. This scheme is trivially insecure in our
model of leakage: the adversary can simply request the first λ bits of the key

1The concept of HILL-pseudoentropy was first introduced (with some differences from the
modern definition) by Håstad et al. in [HILL99]. Barak et al. have written a good overview
[HLR07], which also includes a lot of material on the relationship between HILL-pseudoentropy
and some related notions. Conditional min-entropy was used by Dziembowski and Pietrzak
[DP08].
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as leakage from the first round, the next λ bits of the key as leakage from the
second round, and so on. Clearly, this would allow the adversary to learn the
entire key, breaking our scheme. Therefore, the generator has to be stateful,
which allows us to change the key during operation.

Definition 4.4. A tuple (K,S) is a stateful pseudorandom generator if S : K →
K×X is a circuit and K is a random variable on K.

For any k ∈ K, we define kS0 (k) = k and, for i ∈ {1, 2, . . .}, (kSi (k), Xi(k)) =
S(kSi−1). Where this does not cause confusion, we will simply write k0, k1, X1,
k2, X2 and so forth.

The above is not a new idea: as alluded to in section 2.2, almost all “real”
pseudorandom generators are defined in this way. Such a construction has
many advantages; most obviously, it allows a programmer to request “random”
data as needed.

Unfortunately, a naive stateful generator is no more secure than its stateless
counterpart. Consider an algorithm that generates a single key, and, each
round, uses the entire key to generate output and a new key. No matter the
exact algorithms used, this is insecure: future keys can be calculated efficiently
from the current key, and therefore the adversary can request part of the future
key as leakage from the current round. (As noted in section 6.1, one could
argue that this “precalculation attack” is an artefact of our model rather than
a realistic threat; but we do not have a model that is clearly better.) Repeating
these requests as above would then disclose some future key in its entirety.

Under the assumption that “only computation leaks information,” this
problem can be solved. To get around it, the stateful pseudorandom gen-
erators introduced by (Dziembowski and) Pietrzak [DP08, Pie09a] have two
independent keys and use these keys in alternating rounds.

Of course, we must precisely define what it means for such a generator to
be secure. We will give several definitions. Let us first define an analogue of
the security notion given in definition 2.3.

Definition 4.5. A stateful pseudorandom generator (K,S), as above, is (ε, s, q)-
secure if (X1, X2, . . . , Xq) is (ε, s)-indistinguishable from (U(1)

X
, U(2)

X
, . . . , U(q)

X
).

The above definition is simple and perfectly fine, but does not handle
leakage at all. The following definition is the main security notion used by
(Dziembowski and) Pietrzak [DP08, Pie09a]; their generators are secure in this
sense.
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Algorithm 4.1: Observeλ
A,S(k)

Λ←− 00

ASOλ
k (·)()

return Λ

Oracle SOλ
k ( f)

(k, X)
k+←− S(k)

Λ←− Λ|| f (k+)[1..λ]
return (X, f (k+)[1..λ])

Definition 4.6 ([DP08, Pie09a]2). A stateful pseudorandom generator (K,S),
where S : K→ K×X, is λ-past-leakage resilient (ε, s)-pseudorandom for q queries
if Xq is (ε, s)-indistinguishable from UX given (X1, X2, . . . , Xq−1, Λ[1..(q−1)λ]),
where Λ = Observeλ

A,S(K).

Essentially, the above definition guarantees an attacker cannot recover the
key from the output and leakage of the generator, nor can she in any other
way obtain future output; however, it does not tell us anything about the
quality of the output while the device is leaking. The following definition
is much more powerful and much better suited to our purposes; we will
exclusively consider this definition in chapter 5.

Definition 4.7. A stateful pseudorandom generator (K,S), where S : K →
K × X, is λ-leakage resilient (ε, s, α)-forward secure for q queries if, for each
circuit A, HHILL

ε,s−|A|(Xq|X1, X2, . . . , Xq−1, Λ[1..(q−1)λ], kq) ≥ X− α, where Λ =

Observeλ
A,S(K).

This definition is different from definition 4.6 in several ways. Unlike that
definition, it does guarantee that the output is hard to predict even while the
device is leaking. We pay for this extra power by the fact that the output is no
longer indistinguishable from uniform but merely from something with high
min-entropy.

This new security notion also includes forward security: if an adversary
does obtain the key, she cannot calculate the past output. Depending on the
protocol, this may severely limit the damage that can be done. For instance,
when using a pseudorandom generator to encrypt data, it means that past
messages cannot be read when the key is compromised. Indeed, 0-leakage
resilient (ε, s, 0)-forward security for q queries is just the usual (black box)
notion of forward security for pseudorandom generators; see, for instance,
[BY03, section 2.2] (the rest of that paper is a good overview of forward
security in the context of pseudorandom generators and MACs, and well
worth a read too.)

2These definitions are somewhat scattered. Read at least “Indistinguishability” in section 2
and theorem 1 in the first article and “Leakage-Resilient Security Notion”, again in section 2, and
theorem 2 in the latter article.
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Note that (Dziembowski and) Pietrzak prove that their generators are past-
leakage resilient secure, as can be seen from [DP08, theorem 1] and [Pie09a,
theorem 2]. However, we can prove that a slight variant of Pietrzak’s generator
(and Dziembowski and Pietrzak’s generator) is also secure in the sense of
definition 4.7. For the gory technical details, see section A.3.

Note that this is not true in general: a generator may be past-leakage
resilient pseudorandom without being leakage-resilient forward secure. Con-
sider any generator that is secure in the first sense with λ bits of leakage and
produces Xi ∈ {0, 1}n for some n. Now consider the generator that just runs
this generator and then outputs (Xi)1..λ. It is no easier to distinguish between
(Xi)1..λ and (Yi)1..λ than it was to distinguish between Xi and Yi (in both
cases, given past output and leakage; Yi is as in definition 4.3,) so this new
generator is still λ-past-leakage resilient pseudorandom; but it’s clearly not
leakage-resilient forward secure, since the adversary can just request (Xi)1..λ
as leakage.

There are many more security notions that make sense, for instance (Dziem-
bowski and) Pietrzak’s past-leakage resilient forward security [DP08, Pie09a].
The interested reader is referred to section A.1 and section A.2, where we
conjecture that their proof does not work and provide an alternative to the
step which may be wrong.

There are more fundamental open questions, too; see section 6.2.





5 Message authentication codes

As in the previous chapter, the security notion we introduced for MACs
(definition 2.5) is based on a black-box assumption. We provide a security
notion that is useful in leakage-resilient cryptography and a construction that
achieves this level of security.

Of course, merely having a definition is not particularly useful. We start
by reformulating definition 2.5 in such a way that our security notion for
leakage-resilient cryptography is clearly an extension; this is section 5.1. We
go on to prove a technical result about MACs (section 5.2) before giving our
definitions (section 5.3.) Finally, we give a construction and prove it secure in
section 5.4, solving the main problem as presented in the introduction.

5.1 Security in the standard setting

We have defined a security notion for MACs in section 2.3 (definition 2.5).
In this chapter we define a security notion that does consider leakage. The
following definition forms the “missing link”; we show it’s equivalent to
definition 2.5 and it’s also obviously related to definition 5.6.

Algorithm 5.1: Forgeq
A,Π(k)

Q←− ∅
r ←− 0
ATagOk(·),VrfyO

q
k(·,·)

return r

Oracle TagOk(m)
Q←− Q ∪ {m}
return Tagk(m)

Oracle VrfyOq
k(m, t)

Q←− Q ∪ {(m, t)}
v←− Vrfyk(m, t)
if v = 1∧m 6∈ Q ∧ |Q| < q {

r ←− 1
}
return v
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Definition 5.1. Let Π = (K,Tag,Vrfy) be a message authentication code.
Then Π is (ε, s, q)-secure if P[Forgeq

A,Π(K) = 1] < ε for any circuit A of size
at most s.

Lemma 5.2. Let Π be a message authentication code. If Π is (ε, s, q)-secure in
the above sense, it is (ε, s− 1, q− 1)-secure in the sense of definition 2.5. If Π is
(ε, s, q− 1)-secure in that sense, it is (qε, s, q)-secure in the above sense.

Proof. Suppose Π is (ε, s, q)-secure in the above sense. Let A be any circuit of
size at most s− 1; let A′(k) = VrfyOk(A(k)). Note |A′| = |A|+ 1 ≤ s, and
P[BlackBoxForgeq−1

A,Π(K) = 1] ≤ P[Forgeq
A′ ,Π(K) = 1] ≤ ε.

Suppose Π is (ε, s, q− 1)-secure in the sense of definition 2.5. Let A be any
circuit of size at most s and let i = argmaxi∈{1,2,...,q} P[Forgei

A,Π(K) = 1]−
P[Forgei−1

A,Π(K) = 1]. (That is, let i be the number of a round in which the
adversary is most likely to first forge a message.) Now define A′ as a circuit
which performs the same operations as A, except that all queries to VrfyO

are replaced by the constant 0, except if it is the i-th query, in which case
VrfyOk(m, t) is replaced by return(m, t). Then |A′| ≤ |A| ≤ s and

P[Forgeq
A,Π = 1]

≤
q

∑
i=1

P[Forgei
A,Π(K) = 1]

≤ q(P[Forgei
A,Π(K) = 1]− P[Forgei−1

A,Π(K) = 1])+

P[Forge0
A,Π(K) = 1]

= qP[BlackBoxForgeq−1
A′ ,Π(K) = 1] + 0

< qε

5.2 MACs with weak keys

In practice, almost all MACs generate a key from a uniform distribution.
However, we are interested in leakage-resilient cryptography, and we cannot
obtain uniform randomness in that setting. Therefore, it is natural to consider
MACs for “weak keys,” that is, keys that are less than perfectly random.

Theorem 5.3. Let Π = (K,Tag,Vrfy) be an (ε, s, q)-secure MAC. Let K′ be a ran-
dom variable such that ∀k ∈ ΩK′ : P[K′ = k] ≤ ∆P[K = k]. Then (K′,Tag,Vrfy)
is a (∆ε, s, q)-secure MAC.

Proof. Let A be any circuit of size at most s. Then

P[Forgeq
A,Π(K′) = 1] = P[K′ ∈ {k : Forgeq

A,Π(k) = 1}]

= ∑
k∈{k:Forgeq

A,Π(k)=1}
P[K′ = k]
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≤ ∑
k∈{k:Forgeq

A,Π(k)=1}
∆P[K = k]

= ∆P[Forgeq
A,Π(K) = 1]

≤ ∆ε

While the above is very general, its condition is somewhat uncommon
in cryptographic theorems (in fact, it’s the concept of “density” as used by
Reingold et al. [RTTV08].) The following formulation will look more familiar.

Corollary 5.4. Let Π = (UK,Tag,Vrfy) be an (ε, s, q)-secure MAC. Let K′ be a
random variable on K with min-entropy log(|K|)− α. Then (K′,Tag,Vrfy) is a
(2αε, s, q)-secure MAC.

Proof. For any k ∈ K, P[K′ = k] ≤ 2−H∞(K) = 2αP[UK = k]. Now apply
theorem 5.3.

5.3 Stateful MACs

Just as a stateless pseudorandom generator cannot be secure when leakage is
considered (see section 4.2,) a “standard” MAC cannot be secure either: an
adversary can very easily obtain the key used. Therefore, let us define stateful
MACs.

Algorithm 5.4: SelfCheckΠ(k, k′, M, T)

for m ∈ M1..|M|−1 {
k←− Tagk(m)1

}
for (m, t) ∈ T {

k′ ←− Vrfyk′(m, t)1
}
k←− Tagk(M|M|)2
return Vrfyk′(M|M|, t)2

Definition 5.5. A tuple Π = (K, K′,Tag,Vrfy) is a stateful message authentica-
tion code if K and K′ are random variables and Tag : ΩK ×M→ ΩK ×T and
Vrfy : ΩK′ ×M → ΩK′ × {0, 1} are circuits. We require that ∀k ∈ ΩK, k′ ∈
ΩK′ , n ∈ Z≥0, M ∈Mn, T ∈ (M×T)n+1 : SelfCheckΠ(k, k′, M, T) = 1.

Note that a “stateless” MAC as defined in definition 2.4 is just a stateful
MAC that never updates its key; in that case, SelfCheckΠ(k, k′, M, T) is
equivalent to the correctness requirement given in that definition.

The following security notion is useful in the context of leakage-resilient
cryptography. We first allow the adversary to query both TagO and VrfyO

(since the key evolves, being able to query VrfyO as well as TagO makes



28 Leakage-resilient authentication

the adversary slightly more powerful; it’s somewhat surprising that Bellare
and Yee [BY03, section 3.2] do not mention this.) We subsequently reveal the
key used by TagO. The adversary wins if she can generate a valid tag on a
message that has not been seen by TagO, either before or after receiving the
key. In the latter case, only tags which were generated using an “earlier” key
count.

Note the similarity between this definition and definition 5.1. As in sec-
tion 4.2, splitting the adversary into two parts does not constitute a significant
limitation.

Algorithm 5.5: Forgeq,λ
A,Π(k, k′)

Q←− ∅
r ←− 0
iTag ←− 0
iVrfy ←− 0

A
TagOλ

k (·),VrfyO
q
k′ (·,·)

1 ()

A
VrfyO

min(iTag−1,q)
k′ (·,·)

2 (Q, k)
return r

Oracle TagOλ
k (m, f)

iTag ←− iTag + 1

(k, t) k+←− Tagk(m)

Q←− Q ∪ {(iTag, m, t, f , f (k+)[1..λ])}
return (t, f (k+)[1..λ])

Oracle VrfyOq
k′(m, t)

iVrfy ←− iVrfy + 1

(k′, v) k′+←− Vrfyk′(m, t)
if v = 1∧ (iVrfy, m, t) 6∈ {q′1..3 : q′ ∈ Q} ∧ |Q| ≤ q {

r ←− 1
}
Q←− Q ∪ {(iVrfy, m, t, v)}
return v

Definition 5.6. Let Π = (K,Tag,Vrfy) be a stateful message authentication
code. Then Π is λ-leakage resilient (ε, s, q)-forward secure if, for any tuple of
circuits A = (A1,A2) such that |A1|+ |A2| ≤ s, P[Forgeq,λ

A,Π(K, K′) = 1] < ε.

5.4 Main construction

We will now propose a scheme that satisfies the security definition given
above (definition 5.6.) The basic idea is simple: we take a leakage-resilient
pseudorandom generator and use it to generate keys for a (stateless) MAC. We
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know that the output of the pseudorandom generator has high pseudoentropy
and can use theorem 5.3 to prove that the resulting combination is secure.

Algorithm 5.8: TagSk (m)

(k, X)←− S(k)
return (k,TagX(m))

Algorithm 5.9: VrfySk′ (m, t)

(k′, X)←− S(k′)
return (k′,VrfyX(m, t))

Construction 5.1. Let (K,S) be a stateful pseudorandom generator, where S : K→
K×X, and let Π = (K′,Tag,Vrfy) be a MAC, where Tag : X×M→ T. Then
ΠK,S is the stateful MAC (K2,TagS,VrfyS), where K2 is defined by K2(x, x) =
K(x) and the circuits are defined as above.

Theorem 5.7. Let (K,S), Π = (K′,Tag,Vrfy) and ΠK,S = (K,TagS,VrfyS)

be as defined above. Let (K,S) be λ-leakage resilient (ε, s, α)-forward secure for q
queries. Let (UX,Tag,Vrfy) be (ε′, s′, 2)-secure (as defined in definition 5.1).

Then ΠK,S is λ-leakage (q(ε + 2αε′), s′′)-forward secure for q queries, where
Here, s′′ is such that, for all tuples A = (A1,A2) where |A1| + |A2| ≤ s′′,
|Forgeq,λ

A,ΠK,S | ≤ min(s, s′)− 2 maxk∈ΩK |k|.
1

Proof. Let A = (A1,A2) be as above. Let us consider Forgeq,λ
A,ΠK,S(K, K) as

defined in definition 5.6. In particular, what is the probability that A1’s i-th
query first breaks the scheme, i.e. that the i-th query is a query (m, t) such
that VrfyOk′(m, t) sets r ←− 1 for the first time?

Note that A1 would have gotten the same responses to previous queries
if we had replaced VrfyO by a version that only gives out trivial answers
(i.e. evaluates the function

[
(iVrfy, m, t) ∈ {q′1..3 : q′ ∈ Q}

]
) for the first i− 1

queries. Since A1 could easily simulate this function, and such an adapted
version A′1 would still satisfy |A′1|+ |A2| ≤ s, having access to (this simplified
version of) VrfyO does not meaningfully help the adversary.

Let X be as defined by S : K→ K×X. Let s′ be s′′ minus the size of the
part of A1 that must be executed to find the i-th query; let A′1 be a circuit
executing this same part, replacing the first i− 1 calls to VrfyO in the above
fashion and handling calls to TagO by sending a request to the oracle SOλ

k ( f )
as defined for algorithm 4.1. Then HHILL

ε,s′ (Xi|Q) ≥ HHILL
ε,s−|A′1|

(Xi|X1, X2, . . . ,

Xi−1, Λ[1..(i−1)λ]) ≥ log(|X|)− α. We apply theorem 5.3 to prove that A1 has
probability at most ε + 2αε′ of breaking the scheme in round i.

1As a technical detail, we execute return(0) as soon as the adversary makes the i + 1-th query
and thereafter remove any gates that cannot change the outcome for any input. If we did not do
this, we would have to set s′′ ridiculously low to account for an adversary A′ composed entirely
of TagO gates, which would make Forgeq,λ

A,ΠK,S at least |A′| · |TagO| gates large.
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Let us now consider A2. We will assume that A2 makes the i-th query to
VrfyO, including those queries made by A1, and that this query is the first
to break the scheme. By the same argument as above, HHILL

ε,s′ (Xi|Q, k) ≥
HHILL

ε,s−|A′1|−|A′2|
(Xi|X1, X2, . . . , Xi−1, Λ[1..(i−1)λ] ≥ |X| − α and therefore A2 has

probability at most ε + 2αε′ of breaking the scheme in this round. Here, A′1 is
as above, making as many queries as A1 did; s′ is s′′ − |A1| minus the size of
the part of A2 that must be evaluated to find the i-th query; and A′2 is that
same part, replacing calls to VrfyO as A′1 does.

There are several interesting open problems in this space; see section 6.3.



6 Open questions

We give a succinct, expert-level overview of some of the more important open
questions related to this thesis. Leakage-resilient cryptography is a very new
field, so it is perhaps unsurprising that the number of open questions is rather
large, even for such a basic object. Still, even fairly obvious questions remain
unanswered.

6.1 Modelling leakage

The model presented in section 3.2 is not the only model being studied, and
there is a lively debate both in the theory community and between the theory
community and the practitioners on the best way to model side-channel
attacks. Pietrzak gives a good overview of the various theoretical models
[Pie09b]; we have tried to give an overview of various real-world attacks
in section 3.1. This material is based on talks and informal discussions at
the workshop “Provable Security against Physical Attacks” (15–19 February,
Leiden, the Netherlands) and some of my own thoughts.

Choosing the leakage function. Our model allows the adversary to choose
the leakage function f . In some real-world attacks, this can actually be
done to a certain extent: for instance, when measuring the electromagnetic
fields generated by a device, the probe may be moved to measure the power
consumption of specific parts. Modelling this does not hurt (the alternative
would be to give all such information to the adversary, which is perhaps more
than can be achieved in real-world attacks.)

On the other hand, one could argue that the adversary is given the ability
to do far too precise measurements. As noted in section 4.2, if we want
to design a secure pseudorandom generator our model forces us to use at
least two parts of state: otherwise, the adversary can compute (part of) some
future key ki = S(S(. . .S(k0)1 . . .)1)1. Certainly, side-channel attacks can
be distressingly powerful — but could they really be used to obtain such a
complex function of the internal state?

Some attempts have been made at reducing the power of the adversary in
this respect (see [Pie09b, section 2.4],) but these models may err in the other
direction.
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Separate calculations leak separately. We assume that separate calculations
do not influence the leakage of other calculations at all. This is a very strong
assumption; in the real world, any effect would be extremely small, but is
would be hard to guard against any interference at all.

Only computation leaks information. There have been a number of misun-
derstandings related to the “only computation leaks information” assumption.
In particular, we do not assume that overwriting memory does not cause
the data stored there to leak. As noted in section 3.1, overwriting (CMOS)
memory uses power related to the number of bits that are different between
the old and the new data. In other words, power analysis would tell the
attacker something about the previous contents. This is modelled: we allow
the attacker to leak from overwritten data as well.

We do assume that we have some storage from which data “at rest” cannot
be extracted. Flash storage, as used in USB sticks, may well have this property.
Otherwise, shielded hardware may be required. This is not an entirely unrea-
sonable requirement: leakage-resilient cryptography is most likely to find a
use on specialized hardware like smartcards, and we only need a very small
amount of secure storage for most algorithms.

Cold-boot attacks. Cold-boot attacks are quite different from the attacks
we usually consider: they give a large amount of information, but only
once, whereas our model talks about a continuous trickle. Nonetheless,
(Dziembowski and) Pietrzak’s generators [DP08, Pie09a] both require only
that the leakage from different operations is uncorrelated (and not the full
strength of the “only computation leaks information” assumption.) The data
recovered from cold-boot attacks appears to depend only on very “local”
properties of the memory, as one would expect (see [HSH+08, section 3.3
and 5]); thus, we have also proven these algorithms secure against cold-boot
attacks, albeit only cold-boot attacks that recover a very small part of the key.
So we can model these attacks, but we do not resist them very well.

Leaking λ bits. In almost all cases, there is a very real problem with our
model: what does it mean to “leak λ bits”? Even basic power analysis attacks
will produce a lot of data — very likely, the amount of data read per invocation
of the algorithm is much greater than the length of any private keys involved.
This data, of course, is not the short but high-signal data that we consider in
our theory, but rather a lot of very noisy data about all bits at once (instead of
one bit in particular).

Tampering attacks are even harder to shoehorn into this model. We do not
consider whether a tampering attack may cause the scheme to malfunction
in a way that breaks the security notion. For instance, we do not consider
whether an adversary may be able to bypass the MAC we construct simply
by forcing the output of the verification procedure to 1. Such attacks may be
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devastating, e.g. when the security of a computing system hinges on loading
only trusted software.

Additionally, even minor errors introduced into the computation may
break the scheme, as proven by Boneh et al. [BDL97]. On the other hand,
not all algorithms are equally vulnerable; therefore, the power of tampering
attacks depends on the entire scheme being considered, and not just upon,
say, the number of bits that can reasonably be flipped.

These issues make our theorems less useful: the scheme may be secure
if the implementation leaks at most λ bits, but if that prerequisite cannot be
checked the theorem isn’t too useful in the real world.

None of the above, however, should be misconstrued as saying that this model
is not the best model we have.

6.2 Pseudorandom generators

Dziembowski and Pietrzak have proven the existence of leakage-resilient
pseudorandom generators [DP08]. Pietrzak has presented a somewhat refined
algorithm [Pie09a] which has the additional property of only relying on a
single primitive which can be implemented using a block cipher.

Block ciphers appear to be very solid. The venerable DES algorithm,
designed in the seventies, can still only feasibly be cracked by trying every
possible key (unfortunately, there are so few keys that this works well, as
demonstrated by the Electronic Freedom Foundation [LG98].) No feasible
attacks against AES are currently known and industry is very familiar with
this algorithm and how to implement it while remaining secure from side-
channel attacks. New attacks on AES are being developed, but since Pietrzak’s
generator is not bound to any particular block cipher this should not present a
real problem — as long as any block cipher is secure, this generator is secure.

Nonetheless, there are still quite a few interesting questions in this area.

Unpredictability instead of indistinguishability. Throughout chapter 4, we
consider random variables Xi that cannot be distinguished from a random
variable with high (maximal) min-entropy. However, most of chapter 5 —
with section 5.2 as the clearest example — only uses the fact that the output of
a pseudorandom generator is unpredictable, which is a weaker requirement
than being indistinguishable from random. This notion is harder to work with,
but it may be possible to obtain better bounds by considering unpredictability
instead of pseudoentropy.

An equivalent of Yao’s theorem. Yao’s theorem tells us that if the next bit
of output of a pseudorandom generator is hard to predict given the output
up to that point, the output is pseudorandom.1

1It is common to refer to Yao’s own work [Yao82] for this theorem, but, strictly speaking, it
is not proven there (theorem 3 probably comes closest). Ballet and Rolland do give a proof in
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We know that the next “block” of output of (Dziembowski and) Pietrzak’s
generators [DP08, Pie09a] is pseudorandom (in particular, hard to predict)
given previous output and previous leakage (definition 4.6); we also know
that the next “block” has high pseudoentropy given previous output and all
leakage including the leakage of this round (definition 4.7.)

It would be nice, although not necessary for the work done in this thesis,
to prove an equivalent to Yao’s theorem for these generators. However, an ad-
versary, once she has obtained X1, can request H(X), (Xi)1..λ, (Xi)λ+1..2λ and
so on, where H(X) is some hash or checksum of X, as leakage. The original
statement can be proven with a fairly straightforward hybrid argument; this
problem, though, appears to be much more difficult.

In addition to the above questions, consider “Bidirectional communication,”
below.

6.3 MACs

We have constructed a leakage-resilient MAC in section 5.4, but there are
still several interesting open problems. Note that almost all of these can be
solved by switching to leakage-resilient signatures as proposed by Faust et al.
[FKPR10] if a reduction in performance is acceptable.

Create a MAC that doesn’t desynchronise easily. We proposed a very gen-
eral construction that is quite secure; unfortunately, since we used a general
leakage-resilient pseudorandom generator, we cannot “rewind” and obtain
previous output of this generator. This means that an adversary can easily
cause the authenticator (Tag)) and the verifier (Vrfy) to use different keys:
simply make the verifier verify any message.

We could embed a counter in the messages and try to verify any message
with a counter between the current value and the current value plus a safety
margin. This does not significantly decrease security and makes the system a
lot more robust (e.g. one can play with the keyfob without being locked out
of one’s car; apparently KeeLoq employs a similar “window”.) On the other
hand, it does not help against malicious intent: an attacker can simply send a
couple of messages at the far end of the window and thereby make the keyfob
“fall behind.”

A better solution would be a tree-based scheme, which would allow us to
create a stateless verifier. As a bonus, this would allow us to efficiently verify
any pair of counter and message, provided that no message with this counter
has been accepted yet.

Bidirectional communication. Our construction is only secure if only the
authenticator leaks — we do not allow the verifier to leak at all. A verifier that

[BR09]; they appear to have obtained it from Goldreich’s textbook [Gol01]. I would recommend
obtaining a copy of said textbook.
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can tolerate leakage would be useful, as it would allow authenticated bidi-
rectional communication. There is some hope that a tree-based construction
as hinted at above might work; however, it still presents plenty of problems.
Notably, since TagXi (m) quite possibly discloses a lot of information about Xi,
the adversary can potentially take (parts of) Xi+1, Xi+2 etcetera into account
when requesting leakage for round i. It is fairly easy to see that, for instance,
Pietrzak’s generator [Pie09a] is not secure in this scenario: the adversary can
calculate ki+2 = S(ki, Xi), ki+4 = S(ki+2, Xi+2) and so on, and request part of
some future key as leakage.

It would also be interesting to consider bidirectional communication where
both devices can leak at the same time. Unfortunately, no pseudorandom
generator which can withstand this kind of leakage is currently known.

Going further, it may be useful to consider n devices. “Signing” a per-
device key (and, optionally, per-device state) using a regular MAC may make
it possible to do this efficiently: essentially, we let each device keep the state
related to that device for us, and ensure that the state cannot be tampered
with by signing it.

Encryption and authentication. Many communication channels must be
immune to both eavesdropping and manipulation — that is, we should be
able to combine encryption with a message authentication code. In black-box
cryptography we can encrypt the data and then authenticate the encrypted
data (“encrypt-then-authenticate”); this is guaranteed to be secure if the
encryption and MAC are secure (Katz and Lindell treat this at length [KL08,
section 4.9].)

In leakage-resilient cryptography, things aren’t quite as clear-cut. The
obvious analogue is to calculate (k, X) ←− S(k) (using a leakage-resilient
pseudorandom generator) and Tagk′(X⊕m) ((using our MAC,) where m is
the message and k and k′ are keys. However, this has many problems.

For one, our model allows the adversary to obtain part of (k, k′, m) while
we are operating on it; therefore, the adversary can obtain part of our message.
Worse, the adversary can obtain something that is related to both k and
k′. If our algorithms are good, both keys will still have high pseudoentropy;
however, from the perspective of the adversary, the keys are no longer independent
— which is required for Katz and Lindell’s proof that encrypt-then-authenticate
works.

It appears that leakage-resilient encryption has not been extensively stud-
ied; however, this question would need to be answered if we want to have a
full suite of leakage-resilient protocols.
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A Notes on existing generators

(Dziembowski and) Pietrzak asserted that their generators were forward-
secure (using a different definition than the one we use, definition 4.7; we will
call their definition past-leakage resilient forward security.) Unfortunately, the
proof relies on an “obvious” property of HILL-pseudoentropy which is likely
not true. We point out the problem in section A.1 and prove a lemma that can
provide the missing step in section A.2. Finally, we prove that these generators
are leakage resilient forward secure (i.e. secure as defined in definition 4.7) in
section A.2.

A.1 Pseudoentropy and leakage

It is a well-known (among cryptographers) fact that H∞(X) changes in a
sensible way if we give out information about X. Intuitively, if H∞(X) = p
and we give out λ bits, X “has p− λ unknown bits left”. However, this does
not appear to be the case for HILL-pseudoentropy. Let us first give the result
for min-entropy, which inspired us to believe that something similar may hold
for pseudoentropy.

Proposition A.1. Let X and V be random variables and let T = ΩV . Then

PV=v[H∞(Xv) ≥ H∞(X)− log |T| − log ∆] ≥ 1− 1
∆

for all ∆ ∈ R>0.

Proof. The desired bound follows from a simple calculation:

PV=v[H∞(Xv) < H∞(X)− log |T| − log ∆]

= ∑
v∈T

P[V = v]
[

max
x∈ΩX

P[X = x|V = v] > ∆|T|2−H∞(X)

]
≤ ∑

v∈T
P[V = v]

[
max
x∈ΩX

P[X = x]
P[V = v]

> ∆|T|2−H∞(X)

]

≤ ∑
v∈T

P[V = v]

[
2−H∞(X)

P[V = v]
> ∆|T|2−H∞(X)

]
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= ∑
v∈T

P[V = v]
[

P[V = v] <
1

∆|T|

]
<

1
∆

It seems as if a proof of an analogue to the above statement should
proceed along these lines: define random variables X, Y and V, where X is a
random variable on S and Y is (ε, s)-indistinguishable from X given V. Let
f : S→ {0, 1}λ be a circuit.

Note HHILL
ε,s (X|V) ≥ H∞(Y); we’d hope that Pf (X)=z[HHILL

ε′ ,s′ (X|V, f (X)) ≥
H∞(Yz)− log ∆| f (X) = z] ≥ 1− ∆ for ε′ ≈ 2λε, s′ ≈ s− | f | and small ∆. We
will introduce some standard notions and then show that this simply isn’t
true.

Definition A.2. A (ε, s)-one-way function is a function F : S→ T such that, for
all circuits A of size at most s, P[F(A(F(US))) = F(US)] < ε.

Note that one-way functions do not necessarily make it hard to recover part
of their input: if F is a one-way function, so is F′ : S× S′ → T × S′ : F′(x, r) =
(F(x), r). Nonetheless, a one-way function must make it hard to recover some
part of the input. We can formalize this “some part” with the notion of
hardcore predicates (bits).

Definition A.3. An (ε, s)-hardcore predicate (also called a hardcore bit) for a
function F : {0, 1}n → {0, 1}m is a function h : {0, 1}n → {0, 1} such that, for
all circuits A of size at most s, P[A(F(Un)) = h(Un)] ≤ 1

2 + ε.

It is not currently known whether one-way functions or hardcore predicates
exist. It is widely believed that this is the case, though. However, if we could
prove that one-way functions exist then we immediately obtain P 6= NP (as
noted in section 1.2, this is believed to be true but has not been proven despite
numerous attempts.)

Given a one-way function, it is possible to construct a one-way function
with a specific hardcore predicate: if F : {0, 1}n → {0, 1}m is a one-way func-
tion, h(x, r) = ⊕n

i=1xi · ri is a hardcore predicate for F′ : {0, 1}n × {0, 1}n →
{0, 1}m × {0, 1}n : F′(x, r) = (F(x), r). This was proven by Goldreich and
Levin, and is therefore called the Goldreich-Levin theorem [GL89]; Katz and
Lindell also treat it [KL08, section 6.3].

Remark A.4. Let F : {0, 1}n → {0, 1}m be a one-way function and let h : {0, 1}n →
{0, 1} be a hardcore predicate of this function. Pick any β ∈ [0, 1], and define

X = (U1, Up, h(Un))

Y0 = (U1, Up, U′1)

Y1 = (h(Un), Up, U′1)

Yβ = (1− β)Y0 + βY1

V = F(Un)



Appendix A. Notes on existing generators 41

Since h is a hardcore predicate of F, h(Un) is indistinguishable from U1 given
V = F(Un).

However, define f : {0, 1}p+2 → {0, 1} : x 7→ xp+2. X and Y are distinguishable
given V and f (X) = h(Un): consider a circuit D that outputs 1 exactly if the first
bit equals h(Un). We obtain

ε′ ≥ |P[D(Yβ, V, f (X)) = 1]− P[D(X, V, f (X)) = 1]|

= |P[Yβ
1 = b(Q, R)]− P[X1 = b(Q, R)]|

= |(1− β) · P[U1 = z] + β− P[U1 = z]|
= β · P[U1 6= z]

=
β

2

Unless β is very small, this means that ε′ is much larger than 2λε.

Note that our definition of Yβ seems pretty innocuous: it has high min-
entropy (Y0 “seems optimal”). Of course, f is utterly trivial. Furthermore,
Yβ is efficiently samplable, i.e. we can efficiently create a random variable with
the same distribution as Yβ using only uniform randomness (for particu-
lar, arbitrarily small values of β.) Consider (1 −

[
Uq = 0q])(U1, Up, U′1) +[

Uq = 0q] (h(Un), Up, U′1); this has the same distribution as Y2q . It does not
seem possible to restrict the problem further and still hope to obtain a relevant
result.

Hsiao et al. give a different, and arguably better, concept of conditional
min-entropy [HLR07]. They then base their definition of HILL-pseudoentropy
on this concept just as we have based our definition of HILL-pseudoentropy
on Dziembowski and Pietrzak’s concept of computational entropy [DP08].
Unfortunately, using their definition would not help us: remark A.4 suggests
that the problem is in maintaining indistinguishability.

A.2 Past-leakage resilient forward security

Despite the above problems, (Dziembowski and) Pietrzak’s generators are
past-leakage resilient forward secure. The following lemma can be used to
provide the missing step from the next-to-last equation to the last equation
of Dziembowski and Pietrzak’s article [DP08]; Pietrzak’s generator is not
explicitly proven secure, but Pietrzak asserts past-leakage resilient forward
security based on essentially the same argument as in the earlier paper, and
the same argument applies.

Lemma A.5. Let X, X′, Y, Y′ and V be random variables such that X′ is independent
from Y and Y′. Suppose (X, Y, V) is (ε, s)-indistinguishable from (X′, Y′, V). Then
(X, Y, V) is (2ε, s−maxx∈ΩX |x|)-indistinguishable from (X′, Y, V).

Proof. Suppose not, i.e. let A be a circuit of size at most s−maxx∈ΩX |x| such
that |P[A(X, Y, V) = 1]− P[A(X′, Y, V) = 1]| ≥ 2ε.
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Suppose that |P[A(X′, Y, V) = 1]− P[A(X′, Y′, V) = 1]| ≥ ε. Since X′ is inde-
pendent from Y and Y′, there is an x∗ ∈ ΩX such that

|P[A(x∗, Y, V) = 1]− P[A(x∗, Y′, V) = 1]|
≥ |P[A(X′, Y, V) = 1|X′ = x∗]− P[A(X′, Y′, V) = 1|X′ = x∗]|
≥ ε

Consider the circuit A′(X, Y, V) = A(x∗, Y, V). It would distinguishes be-
tween (X, Y, V) and (X′, Y′, V) with probability at least ε and is of size
|A′| = |A| + |x∗| ≤ s. This contradicts our assumption, and therefore
|P[A(X′, Y, V) = 1]− P[A(X′, Y′, V) = 1]| < ε. But then

|P[A(X′, Y, V) = 1]− P[A(X′, Y′, V) = 1]|
= |P[A(X′, Y, V) = 1]− P[A(X′, Y, V) = 1]+

P[A(X′, Y, V) = 1]− P[A(X′, Y′, V) = 1]|
≥ |P[A(X′, Y, V) = 1]− P[A(X′, Y, V) = 1]|+
|P[A(X′, Y, V) = 1]− P[A(X′, Y′, V) = 1]|

> 2ε− ε

= ε

Therefore, A would distinguish between (X, Y, V) and (X′, Y′, V) wth proba-
bilty at least ε. This again contradicts our assumption, so no such A — no A
that distinguishes between (X, Y, V) and (X′, Y, V) — exists.

A.3 Leakage-resilient forward security

We prove that a slightly changed version of Pietrzak’s generator [Pie09a] is
forward secure as defined in definition 4.7. The same argument can be applied
to Dziembowski and Pietrzak’s earlier generator [DP08]. Be warned that the
proof requires a good understanding of Pietrzak’s work, most importantly
[Pie09a, lemma 7]. If one is willing to assume that generators satisfying
definition 4.7 exist, this section may be skipped.

Pietrzak’s generator is based on weak pseudorandom functions, so let us
introduce them.

Definition A.6 ([Pie09a, section 1.2]). Let F : {0, 1}κ × {0, 1}n × {0, 1}m be a
function; let K = Uκ ; draw R : {0, 1}n → {0, 1}m uniformly at random from
the functions from {0, 1}n to {0, 1}m. Then F is a (ε, s, q)-secure weak pseudo-
random function if (FK(U

(1)
n ), FK(U

(2)
n ), . . . , FK(U

(q)
n )) is (ε, s)-indistinguishable

from (R(U(1)
n ), R(U(2)

n ), . . . , R(U(q)
n ).

Following Dziembowski and Pietrzak’s work, we split the output Xi into
two parts: Xout

i remains output and Xnxt
i is used in the further calculation.

Definition A.7. Let F : {0, 1}κ × {0, 1}n → {0, 1}κ × {0, 1}n × {0, 1}m be
a weak pseudorandom function. Consider the pseudorandom generator
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((0, Uκ , Uκ , Un),S). If i is even, we define S(i, K, K′, Xnxt) = (i + 1, F(K, Xnxt)1,
K′, F(K, Xnxt)2, F(K, Xnxt)3); if i is odd, we define S(i, K, K′, Xnxt) = (i + 1, K,
F(K′, Xnxt)1, F(K, Xnxt)2, F(K, Xnxt)3).

We can now prove that this variant is leakage-resilient forward secure. The
proof is not too complex, but relies on many details of that article.

Theorem A.8. Let (Uκ , F′) be the algorithm defined above. Suppose that F is a

(ε, s, n
ε )-secure weak pseudorandom function. Let ε ≥ n · 2−n

3 , n ≥ 20, λ =
log(ε−1)

6 .

Then (Uκ , F′) is λ-leakage resilient (8(q+ 1)ε
1

12 , sε2

2λ+2(n+κ)3 − 2κ + n, q, 2λ)-forward
secure.

Proof. Let all variables be as in the proof of [Pie09a, lemma 7]. Define K′i
analogously to K′i−1 by demanding that K′i is indistinguishable from Ki
given view−i . Define X′nxt

i = (X′i)1..n and X′out
i = (Xi)n+1..n+m. Note that

these can all be chosen to be independent; let us do so. Now, K′i and K′i−1
have min-entropy κ − 2λ, X′nxt

i has min-entropy n− 2λ and X′out
i has min-

entropy m− 2λ (there is a typographical error in the lemma, which states
H∞(K′i) ≥ κ− λ etcetera, omitting the “2.”) As noted in the proof of lemma 7,
HHILL

ε′ ,s′ (F(K′i−1, X′nxt
i−1 )|view

−
i ) ≥ κ + n + m− 2λ.

There are K′′i+1, X′′nxt
i and X′′out

i with min-entropy κ − 2λ, n− 2λ respec-
tively m− 2λ that are (ε′, s′)-indistinguishable from F(K′i−1, X′i−1) = (K′i+1,
X′nxt

i , X′out
i ) (see [Pie09a, lemma 6], near the end of the proof; we use ε′ and s′

instead of the exact value to simplify the expressions we obtain.) Furthermore,
we can choose these to be independent from each other and K′i . Therefore,
HHILL

ε′ ,s′−2κ+n(X′′out
i |view−i , K′i , K′′i+1, X′′nxt

i ) ≥ m − 2λ. Returning to the actual
variables, HHILL

εi+2ε′ ,si−2κ+n(Xout
i |view

−
i , Ki, Ki+1, Xnxt

i ) ≥ m− 2λ, where εi and
si are as in the article.

We sum the error in the same fashion as in [Pie09a], adding the error ε′

and subtracting the circuit size 2κ + n introduced above.





B An extractor-based approach

We initially tried to construct an authentication protocol based on a random-
ness extractor. We were not able to prove it secure; this appendix presents the
problem that caused us to look for other approaches, culminating in construc-
tion 5.1 on page 29. randomness extractor effectively turns a small random
seed and a distribution with sufficient entropy into a uniform distribution.

Definition B.1. A function e : K× S → T is a (p, ε)-randomness extractor if,
for all random variables K over K with min-entropy at least p, eK(X) is
(statistically) ε-close to UT , i.e. if 1

2 ∑t∈T |P[eK(X) = t]− P[UT = t]| ≤ ε.

Note that the output of an extractor is “random” in a statistical sense, not
just in a computational sense. We hoped that this would make it easier to
compose the extractor and the pseudorandom generator into an authentication
protocol.

On the other hand, note that the output of the extractor is only guaranteed
to be random for random X: it’s entirely possible that ek(0n) = 0m for all k,
and likewise ek(0n) and ek(0n−1||1) may be very similar for all k.

Our proof of theorem 5.7 requires that the adversary almost never gets a
non-trivial positive response from VrfyO. Unfortunately, since the extractor
may produce similar output for similar input, we cannot guarantee this: the
adversary may be able to generate a tag on a message related to but not equal
to the message sent to TagO. Even if this could be worked around by changing
the security definition, such a leakage-resilient MAC would not be secure in
the black-box sense definition 2.5.

It may be possible to make this work by having the verifier sign challenges
(using public-key cryptography) and having the authenticator only respond to
correctly signed challenges. However, this would result in a rather unwieldy
protocol based on several unrelated algorithms; the advantage over using the
leakage-resilient public-key system introduced by Faust et al. [FKPR10] would
be much smaller. We did not pursue this further once these problems became
apparent.
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